
Oracle

Blogs Home
Products & Services
Downloads
Support
Partners
Communities
About
Login

Oracle Blog

David Holmes' Weblog

Technical Discussions

Main | Priorities, Scheduli... »

Inside the Hotspot VM: Clocks, Timers and Scheduling
Events - Part I - Windows

By davidholmes on Oct 02, 2006

Clocks and Timers - General Overview

There are two kinds of time related devices in a system:

a means to read a time value; and
a means to schedule/trigger a time related event

The term "clock" is often used to refer to both of these because you read the
time from a clock, and you can (often) set an alarm to have something
happen when the clock reaches a certain time. Sometimes the term "passive
clock" is used for a time source that can only be read, while "active clock" is
used for one that can also trigger an event/interrupt/alarm. For the sake of
discussion (and because they are different hardware devices) I will use the
term "clock" to refer to the means by which a time value can be read, and the
term "timer" for something that can trigger a time-related event.

To further complicate things both clocks and timers can be defined in
absolute or relative terms. An absolute time relates to some external time

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

1 of 13 7/15/20, 9:32 PM

reference (such as UTC) while a relative time is just an elapsed interval.
Systems typically have both an absolute clock (the time-of-day clock, with a
low resolution) and a relative clock (some kind of "high-resolution" counter
from which a "free-running" time can be calculated). Unfortunately, most
systems do not have both absolute and relative timers. Instead they have to
convert one form to the other. This is a problem because events related to
absolute time need to be aware of changes in absolute time (eg the start/end
of daylight savings time), while relative times should be immune to such
changes. Invariably this means that there are problems (one way or the
other) on most operating systems.

The resolution of clocks and timers in modern computers is typically very
different. While time can be read at microsecond, or even better, resolution;
timed events are triggered by operating system controlled interrupts that are
normally much more coarse grained (typically 10ms). Depending on the
platform the interrupt rate may, or may not, be configurable by application
programs. Further, systems often have a quite different resolution for the
time-of-day clock (often low resolution of 10ms or worse) and the free-
running relative clock (microseconds or better), because they are actually
derived from quite different pieces of hardware.

The different resolutions between clocks and timers makes things difficult
when you want to try and measure the resolution of your timer using your
clock (or indeed to measure any kind of execution time). Ideally you want the
resolution of the clock to be a few orders of magnitude finer than that of the
thing being measured. So to measure execution times in microseconds you
need a clock with nanosecond resolution - so don't use a time-of-day clock to
do this! But depending on your system you simply might not have a clock
with the desired high resolution.

Java Programming API's for Clocks and Timers

The absolute "time-of-day" clock is represented by the System.currentTimeMillis()
method, that returns a millisecond representation of wall-clock time in
milliseconds since the epoch. As such it uses the operating system's "time of
day" clock. The update resolution of this clock is often the same as the timer
interrupt (eg. 10ms), but on some systems is fixed, independent of the
interrupt rate.

The relative-time clock is represented by the System.nanoTime() method that
returns a "free-running" time in nanoseconds. This time is useful only for
comparison with other nanoTime values. The nanoTime method uses the highest
resolution clock available on the platform, and while its return value is in
nanoseconds, the update resolution is typically only microseconds. However,
on some systems there is no choice but to use the same clock source as for
currentTimeMillis() - fortunately this is rare and mostly affects old Linux
systems, and Windows 98.

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

2 of 13 7/15/20, 9:32 PM

You should always try to use nanoTime to do timing measurement or calculation
(and yes there are JDK API's that don't do this), in the hope that it will have a
better resolution than currentTimeMillis.

In Java, time-triggered events are performed (at the lowest-level) through
methods like Object.wait(millis, nanos), Thread.sleep(millis, nanos) and the
java.util.concurrent.locks.LockSupport.park methods. These latter methods
underpin the concurrency utilities. Although there are issues with the legacy
methods (wait, sleep) rounding (up or down) the millisecond value based on
the nanosecond value, ultimately the times are passed through to the
platform specific mechanism for doing a timed "wait" - and the same
mechanism is typically used by all methods (primarily for consistent support
of thread interruption). On Solaris and Linux these calls take time structures
that allow microsecond, or nanosecond, values to be passed - but there is no
guarantee of that resolution being achieved: In fact we know it won't be
because of the typical timer interrupt rate of 10ms - so the operating system
applies its own rounding algorithms internally to those calls. In contrast the
Windows mechanism (waitForSingleObject and waitForMultipleObjects) only accepts
millisecond timeout values, so there is no choice but to apply rounding at the
Java or VM level.

There are higher-level API's that support frameworks for scheduling time-
trigerred events. The java.util.Timer and java.util.TimerTask classes provide one
such API - supporting scheduling of tasks at a fixed rate, or fixed delay, and
with both absolute or relative start times. These classes combine the low-
level timed wait routines with use of currentTimeMillis() to determine how long
to wait. Consequently, they work best with tasks that have a delay/rate that is
a number of multiples of 10ms (or 15ms depending on your platform).

Java 5.0 introduced the java.util.concurrent package and one of the
concurrency utilities therein is the ScheduledThreadPoolExecutor (STPE) which is a
thread pool for repeatedly executing tasks at a given rate or delay. It is
effectively a more versatile replacement for the java.util.Timer/TimerTask
combination, as it allows multiple service threads, accepts various time units,
and doesn't require subclassing TimerTask (just implement Runnable).
Configuring STPE with one thread makes it equivalent to the basic
java.util.Timer. It is generally recommended to adopt STPE to replace uses of
Timer/TimerTask. STPE (ultimately) makes use of the timed park methods and use
of nanoTime and so is in a better position to support task rates/delays that are
not 10ms/15ms multiples.

NOTE: Unless timed-waits habitually return early you should always expect
a jitter in releases times on the order of one clock tick. In the original version
of this blog I reported an apparent anomaly with STPE where it had bad
release jitter. I had assumed the problem was with STPE because a simpler
program using nanoTime and Thread.sleep showed almost zero jitter. Upon
further investigation, experimenting on a completely different Windows
platform (ES 2003 on dual-processor opteron vs. Windows 2000 on a PIII

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

3 of 13 7/15/20, 9:32 PM

laptop), I found they performed the same. It seems that the result on the
laptop for the simpler program is the questionable one. This highlights the
problems surrounding clocks and timers on Windows and shows that still
further investigation is needed.

Clocks and Timers on Windows

Windows use of clocks and timers varies considerably from platform to
platform and is plagued by problems - again this isn't necessarily Window's
fault, just as it wasn't the VM's fault: the hardware support for clocks/timers
is actually not very good - the references at the end lead you to more
information on the timing hardware available. The following relates to the
"NT" family (win 2k, XP, 2003) of Windows.

There are a number of different "clock" API's available in Windows. Those
used by Hotspot are as follows:

System.currentTimeMillis() is implemented using the GetSystemTimeAsFileTime
method, which essentially just reads the low resolution time-of-day value
that Windows maintains. Reading this global variable is naturally very
quick - around 6 cycles according to reported information. This time-of-
day value is updated at a constant rate regardless of how the timer
interrupt has been programmed - depending on the platform this will
either be 10ms or 15ms (this value seems tied to the default interrupt
period).
System.nanoTime() is implemented using the
QueryPerformanceCounter/QueryPerformanceFrequency API (if available, else it
returns currentTimeMillis*10\^6). QueryPerformanceCounter(QPC) is
implemented in different ways depending on the hardware it's running
on. Typically it will use either the programmable-interval-timer (PIT), or
the ACPI power management timer (PMT), or the CPU-level timestamp-
counter (TSC). Accessing the PIT/PMT requires execution of slow I/O
port instructions and as a result the execution time for QPC is in the
order of microseconds. In contrast reading the TSC is on the order of
100 clock cycles (to read the TSC from the chip and convert it to a time
value based on the operating frequency). You can tell if your system
uses the ACPI PMT by checking if QueryPerformanceFrequency returns the
signature value of 3,579,545 (ie 3.57MHz). If you see a value around
1.19Mhz then your system is using the old 8245 PIT chip. Otherwise you
should see a value approximately that of your CPU frequency (modulo
any speed throttling or power-management that might be in effect.)

The default mechanism used by QPC is determined by the Hardware
Abstraction layer(HAL), but some systems allow you to explicitly control
it using options in boot.ini, such as /usepmtimer that explicitly requests use
of the power management timer. This default changes not only across
hardware but also across OS versions. For example Windows XP Service

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

4 of 13 7/15/20, 9:32 PM

Pack 2 changed things to use the power management timer (PMTimer)
rather than the processor timestamp-counter (TSC) due to problems
with the TSC not being synchronized on different processors in SMP
systems, and due the fact its frequency can vary (and hence its
relationship to elapsed time) based on power-management settings.
(The issues with the TSC, in particular for AMD systems, and how AMD
aims to provide a stable TSC in future processors is discussed in Rich
Brunner's article referenced below. You can also read how the Linux
kernel folk have abandoned use of the TSC until a new stable version
appears in CPUs.)

The timer related API's for doing timed-waits all use the waitForMultipleObjects
API as previously mentioned. This API only accepts timeout values in
milliseconds and its ability to recognize the passage of time is based on the
timer interrupt programmed through the hardware.

Typically a Windows machine has a default 10ms timer interrupt period, but
some systems have a 15ms period. This timer interrupt period may be
modified by application programs using the timeBeginPeriod/timeEndPeriod API's.
The period is still limited to milliseconds and there is no guarantee that a
requested period will be supported. However, usually you can request a 1ms
timer interrupt period (though its accuracy has been questioned in some
reports). The hotspot VM in fact uses this 1ms period to allow for higher
resolution Thread.sleep calls than would otherwise be possible. The sample
Sleeper.java will cause this higher interrupt rate to be used, thus allowing
experimentation with a 1ms versus 10ms period. It simply calls
Thread.sleep(Integer.MAX_VALUE) which (because it is not a multiple of 10ms)
causes the VM to switch to a 1ms period for the duration of the sleep - which
in this case is "forever" and you'll have to ctrl-C the "java Sleeper" execution.

public class Sleeper {
 public static void main(String[] args) throws Throwable {
 Thread.sleep(Integer.MAX_VALUE);
 }
}

You can see what interrupt period is being used in Windows by running the
perfmon tool. After you bring it up you'll need to add a new item to watch (click
the + icon above the graph - even if it appears grayed/disabled). Select the
interrupts/sec items and add it. Then right click on interrupts/sec under the
graph and edit its properties. On the "data" tab, change the "scale" to 1 and
on the graph tab, the vertical max to be 1000. Let the system settle for a few
seconds and you should see the graph drawing a steady line. If you have a
10ms interrupt then it will be 100, for 1ms it will be 1000, for 15ms it will be
66.6, etc. Note: on a multiprocessor system show the interrupts/sec for each
processor individually, not the total - one processor will be fielding the timer
interrupts.

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

5 of 13 7/15/20, 9:32 PM

Note that any application can change the timer interrupt and that it affects
the whole system. Windows only allows the period to be shortened, thus
ensuring that the shortest requested period by all applications is the one that
is used. If a process doesn't reset the period then Windows takes care of it
when the process terminates. The reason why the VM doesn't just arbitrarily
change the interrupt rate when it starts - it could do this - is that there is a
potential performance impact to everything on the system due to the 10x
increase in interrupts. However other applications do change it, typically
multi-media viewers/players. Be aware that a browser running the JVM as a
plug-in can also cause this change in interrupt rate if there is an applet
running that uses the Thread.sleep method in a similar way to Sleeper.

Further note, that after Windows suspends or hibernates, the timer interrupt
is restored to the default, even if an application using a higher interrupt rate
was running at the time of suspension/hibernation.

Conclusions

If you are interested in measuring absolute time then always use
System.currentTimeMillis(). Be aware that its resolution may be quite coarse
(though this is rarely an issue for absolute times.)

If you are interested in measuring/calculating elapsed time, then always use
System.nanoTime(). On most systems it will give a resolution on the order of
microseconds. Be aware though, this call can also take microseconds to
execute on some platforms.

If you are performing timed waits of any kind be aware that the only (near)
portable resolution you should expect is 10ms. If you can limit yourself to
Windows and are prepared to change the timer interrupt period then you can
get a resolution of around 1ms out of the low-level wait routines. But be
prepared for jitter on the order of a clock-tick. If you find that a framework
like STPE doesn't seem "accurate" enough for your purposes, then you could
try a simpler approach such as writing your own one-shot task repeater,
something like:

public class TaskRepeater { // code sketch only
 final long delay; // delay between end of one execution and start of next
 final Runnable task;
 public TaskRepeater(Runnable r, long millisecondDelay) {
 task= r;
 delay = millisecondDelay;
 }

 volatile boolean terminated = false;
 final Thread worker = new Thread() {
 public void run() {
 while (!terminated) {
 try {

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

6 of 13 7/15/20, 9:32 PM

 task.run();
 }
 catch(Throwable t) {
 // log it or whatever, or let it escape and kill the worker
 }
 try {
 Thread.sleep(delay);
 }
 catch(InterruptedException ex) {
 // just re-loop and check condition
 }
 }
 }
 };
 public void start() {
 worker.start(); // will throw if already started
 }
 public void shutdown() {
 terminated = true;
 worker.interrupt();
 }
}

This might, on a particular machine perform better.

Note:. you should execute the above with the -XX:+ForceTimeHighResolution VM
option, which due to a flaw in its implementation actually disables the
internal attempts to use the high-resolution timer for sleeps. Otherwise, if
you set an interrupt period other than 1ms, the internal sleep
implementation will change it to 1ms if the requested delay is not a multiple
of 10ms.

Finally, for Windows users, particularly on dual-core or multi-processor
systems (and it seems most commonly on x64 AMD systems) if you see
erratic timing behaviour either in Java, or other applications (games, multi-
media presentations) on your system, then try adding the /usepmtimer switch in
your boot.ini file.

References

A good synopsis of the state of Windows timers is given at:
http://www.gamedev.net/reference/programming/features/timing/

There is a good discussion of hardware related timer issues at
http://www.microsoft.com/whdc/system/CEC/mm-timer.mspx

An excellent discussion of the problems using the TSC as a timer, particularly
on AMD systems, and how AMD will address this in future processors, is
given in an article by Rich Brunner (AMD Fellow): http://lkml.org/lkml/2005
/11/4/173

Also read how the Linux kernel folk have abandoned the TSC: "Counting on

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

7 of 13 7/15/20, 9:32 PM

the time stamp counter"

There are a number of related Hotspot bug reports for clock/timer issues on
Windows:

6313903 Thread.sleep(3) might wake up immediately on windows
5005837 rework win32 timebeginperiod usage
6435126 ForceTimeHighResolution switch doesn't operate as intended

Category: Sun

Tags: none

Permanent link to this entry

Main | Priorities, Scheduli... »
Comments:

Since Thread.stop() is deprecated, the only other remaining (non-deprecated)
way to *generically* tell a thread to quit is by interrupting it, triggering an
InterruptedException. Right? If so, then you needn't have a terminated flag;
the interrupt status is sufficient.

Posted by David Smiley on December 29, 2006 at 10:19 PM EST #

You need the terminated flag in case the task itself consumes the interrupt by
resetting the interrupt bit, or else swallowing the InterruptedException.

Posted by David Holmes on January 30, 2007 at 12:41 AM EST #

Is there a Part II of this article?
Thanks,
Nanjunda

Posted by Nanjunda Somayaji on October 16, 2007 at 09:54 PM EST #

are there any guidelines on the lengths o f the intervals one can reliably
measure via the likes of nanotime? being free running it will not be adjusted
for running fast or slow, so presumably as time passes... as it were ... the
absolute value of the error longer and longer measured intervals increases
yes? whereas if a systems timeofday clock is synced via NTP to a good
timesource, the absolute value of the error of longer and longer measured
intervals should remain pretty much fixed. assuming of course I've not
charged off into the weeds in this set of assumptions...

Posted by rick jones on October 31, 2007 at 03:37 AM EST #

Apologies for the delayed response as I didn't get notified of the new
comments.

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

8 of 13 7/15/20, 9:32 PM

Nanjunda: No, sorry, there is no part II. There are others far more expert
than I that can explain time-keeping in Solaris and Linux - both of which are
very complicated; and in the Linux case has undergone recent major change
with the "high resolution timer" support.

Rick: The underlying timer devices have specifications that define their own
allowed error rates (eg. HPET specification), but beyond that I don't know
how to characterise the errors involved in using the different time sources.

Posted by David Holmes on January 01, 2008 at 11:54 AM EST #

Typo: "hence it's relationship" --> "hence its relationship"

Posted by Trevor on April 14, 2009 at 07:29 PM EST #

The Microsoft link has gone bad.

On a related note, are there any other tutorials on timer issues? I'm still a
little foggy on the exact process of the operating system updating its timers
in response to an interrupt, and how that affects accuracy and resolution. I'd
like to read something with a more generic perspective. (This one tends to
focus specifically on Windows' quirks.)

Posted by Trevor on April 14, 2009 at 07:45 PM EST #

Thanks for the typo (fixed) and bad link info. Hopefully the link problem is
temporary as that doc is still referenced from a number of MS sites/docs.

As for other tutorials ... I don't think you'll find anything "generic" because
this is fairly OS specific stuff. For Solaris there is a chapter in "Inside the
Solaris OS". For Linux I expect there is also some kernel document
describing timers - google "linux timer management" yields some interesting
hits.

Posted by David Holmes on April 15, 2009 at 07:09 AM EST #

I am using java.util.Timer to schedule a TimerTask that schedules another
TimerTask and so on according to predefined schedule. The schedule is not
regular and actually has only three times to start a task during a day. I
noticed that tasks are invoked with a delay approximately proportional to the
time passed since they are scheduled. On Linux for 5 hours error exceeds 2
sec, 10 hours gives 4 sec. On PC/Windows the error is smaller - 5 hours gave
15 msec - but it also accumulates. I would understand an error in some limits
defined by granularity of time measurment but this accumulation is strange
to me. Do you have any information about it?

Posted by Boris Shukhat on April 27, 2009 at 05:00 PM EST #

In addition to my previous post, those delays actually happen in

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

9 of 13 7/15/20, 9:32 PM

Object.wait(long) and easily reproducable

Posted by Boris Shukhat on April 27, 2009 at 07:09 PM EST #

I can't comment specifically on what you have observed as I'd need to see
how the timers are being scheduled and check how Timer is implemented.
You may be better off posting to a mailing-list (such as concurrency-
interest@cs.oswego.edu) or a Java forum.

Posted by David Holmes on April 29, 2009 at 04:41 AM EST #

This is very much useful information about java.util.Timer.
Really its very fruitful.

I also liked the following links regarding java job scheduling

Java Job Scheduling with java.util.Timer
http://jksnu.blogspot.com/2011/02/java-job-scheduling.html

Quartz Scheduling with JSP-Servlet
http://jksnu.blogspot.com/2011/03/quartz-framework-implementation-
with.html

Quartz Scheduling with Spring Framework
http://jksnu.blogspot.com/

Posted by Jitendra Kumar Singh on June 18, 2011 at 01:18 PM EST #

Thank you for this article.
One thing I am looking for is the elapsed time independent of the computer
clock. If I am planning to do something every minute, and the user adjusts
his clock back by a year then my event wontt happen for a year if I simply
use the computer clock. GetTickCount() under Windows has this effect, that
the measured elapsed time will work properly even if the user of the PC plays
with the PC clock. Am I right in that System.nanoTime() would also work this
way?

Posted by Jozsef Bekes on January 16, 2013 at 10:47 PM EST #

Post a Comment:

Name:

guest

E-Mail:

URL:

Notify me by email of new comments

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

10 of 13 7/15/20, 9:32 PM

Remember Information?

Your Comment:
HTML Syntax: NOT allowed

Please answer this simple math question

8 + 36 =

 Preview Post

About

The views expressed on this blog are my own and do not necessarily reflect
the views of Oracle.

Search

Enter search term:

Search only this blog

Recent Posts

Parallel Classloading Revisited: Fully Concurrent Loading
To Blog or Not to Blog
Minimize Garbage Generation: GC is your Friend, not your Servant
Real-time Java at OOPSLA 2009
Real-time Java at OOPSLA 2008
Roll up! Roll up! It's JavaOne time again and Real-Time is hitting the Big
Time
Priorities, Scheduling and Real-time
Inside the Hotspot VM: Clocks, Timers and Scheduling Events - Part I -
Windows

Top Tags

concurrency

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

11 of 13 7/15/20, 9:32 PM

java
javaone
jrts
priority
real-time
rts
rtsj
scheduling

Categories

Personal
Sun

Archives

« March 2016
SunMonTueWedThuFriSat

1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Today

Bookmarks

blogs.sun.com
java.com
java.net
opensolaris.org

Menu

Blogs Home
Weblog
Login

Feeds

RSS

All
/Personal
/Sun

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

12 of 13 7/15/20, 9:32 PM

Comments

Atom

All
/Personal
/Sun
Comments

The views expressed on this blog are those of the author and do not
necessarily reflect the views of Oracle. Terms of Use | Your Privacy Rights |
Cookie Preferences

Inside the Hotspot VM: Clocks, Timers and Sch... https://web.archive.org/web/20160308031939/h...

13 of 13 7/15/20, 9:32 PM

