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ABSTRACT
Shenandoah is an open-source region-based low-pause paral-
lel and concurrent garbage collection (GC) algorithm target-
ing large heap applications. Snapshot At the Beginning Con-
current Marking and Brooks-style indirection pointer con-
current compaction enable significantly shorter GC pauses
with durations that are independent of the application’s live
data size. Our implementation of Shenandoah in OpenJDK
allows us to do comparison testing with mature production
quality GC algorithms.

Modern machines have more memory and more processors
than ever before. Service Level Agreement (SLA) applica-
tions guarantee response times of 10-500ms. In order to meet
the lower end of that goal we need garbage collection algo-
rithms which are efficient enough to allow programs to run in
the available memory, but also optimized to never interrupt
the running program for more than a handful of milliseconds.
Shenandoah is an open-source low-pause time collector for
OpenJDK designed to move closer to those goals.

CCS Concepts
•Software and its engineering → Garbage collection;

1. INTRODUCTION

1.1 The Problem
There are modern Java applications with 200gb heaps

that are required to meet quality of service guarantees of
10-500ms. Compacting garbage collection algorithms have
been shown to have smaller memory footprints and better
cache locality than in place algorithms like Concurrent Mark
and Sweep (CMS) [7]. Stopping the world to compact even
10% of a 200gb heap will exceed those pause time require-
ments. Meeting this level of service agreement requires a
garbage collection algorithm which can compact the heap
while the Java threads are running.
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Stop the world (STW) garbage collectors (GCs) present
the illusion to the mutator threads that objects are station-
ary. They stop the world, compact the live objects, and
ensure that all references to moved objects are updated and
then start the Java threads. By contrast, concurrent com-
paction requires that the GC moves objects while the Java
threads are running and that all references to those objects
immediately start accessing the new copy.

1.2 Contributions
The contributions of the Shenandoah algorithm are:

• Shorter pause times for OpenJDK due to concurrent
compaction.

• Freely-available open-source implementation of a garbage
collector with concurrent compaction.

• Architectural neutral algorithm, all that is required is
a reliable atomic Compare and Swap (CAS) operation.

• Standard GC interface (Can compare performance of
G1, CMS, Parallel, or Shenandoah)

2. THE IDEA
Concurrent compaction is complicated because along with

moving a potentially in-use object, you also have to atom-
ically update all references to that object to point to the
new location. Simply finding those references may require
scanning the entire heap. Our solution is to add a forward-
ing pointer to each object, and requiring all uses of that
object to go through the forwarding pointer. This protocol
allows us to move the object while the Java threads are run-
ning. The GC threads and the mutator threads copy the
objects and use an atomic compare and swap (CAS) to up-
date the forwarding pointer. If multiple GC and mutator
threads were competing to move the same object only one
CAS would succeed. References are updated during the next
concurrent marking gc phase.

One of the goals of this project was that other GC algo-
rithms would suffer no space or performance costs from hav-
ing Shenandoah added to OpenJDK. This pure software so-
lution doesn’t change object layout. You may choose among
various GC algorithms at run time. Heap walking tools will
work. The compilers emit barriers only when running the
Shenandoah collector.

The trade off is that Shenandoah requires more space than
other algorithms. We could have chosen to use the mark



word already present in Java objects in OpenJDK however
that word is overloaded for many purposes including object
locking. Checking and masking away those other uses would
have made our read barrier significantly more expensive. A
separate indirection word allows us to use a simple one in-
struction read barrier with minimal cost.

3. MAKING IT WORK
The idea is simple, but modifying a production quality

compiler and run time system to use and optimize new read
and write barriers was not. This paper will describe how we
implemented the idea, the design decisions we made along
the way, and the challenges we still face.

3.1 Object Layout
OpenJDK allocates two header words per object. One

word is used to refer to the object’s class. The other word,
called the mark word, is really a multi-use word used for
forwarding pointers, age bits, locking, and hashing. The
object layout for Shenandoah adds an additional word per
object. This word is located directly preceding the object
and is only allocated when using the Shenandoah collector.
This allows us to move the object without updating all of
the references to the object. The thread that copies the
object performs an atomic compare and swap on this word to
have it point to the new location. All future readers/writers
of this object will now refer to the forwarded copy via the
forwarding pointer. If there is a race where one thread was
reading the object at the same time as another thread was
writing the object there’s a slightly larger window for a race
condition, but no new races were introduced.

Figure 1: Shenandoah Object layout

3.2 Heap Layout
The heap is broken up into equal sized regions. A region

may contain newly allocated objects, long lived objects, or
a mix of both. Any subset of the regions may be chosen to
be collected during a GC cycle.

We’ve developed an interface for GC heuristics which track
allocation and reclamation rates. We have several custom
policies to decide when to start a concurrent mark and which
regions to include in a collection set. Our default heuristic
which was used for our measurements chooses only regions
with 60 percent or more garbage and starts a concurrent
marking cycle when 75 percent of regions have been allo-
cated.

Figure 2: Shenandoah Heap layout

3.3 GC Phases
Shenandoah Phases

1. Initial Marking: Stops the world, scans the root set
(java threads, class statics, ...)

2. Concurrent Marking: Trace the heap marking the live
objects, updating any references to regions evacuated
in the previous gc cycle.

3. Final Marking: Stops the world, Re-scans the root set,
copy and update roots to point to to-region copies. Ini-
tiate concurrent compaction. Free any fully evacuated
regions from previous compaction.

4. Concurrent Compaction: Evacuate live objects from
targeted regions.

Figure 3: Shenandoah GC Phases

Each GC cycle consists of two stop the world phases and 2
concurrent phases. Please see figure 3 for a visual depiction
of the phases.

We stop the world to trace the root set during an Initial
Mark pause, then we perform a concurrent mark while the
Java threads are running. We stop the world again for a final
mark, and then perform a concurrent evacuation phase.



3.3.1 Concurrent Marking
We use a Snapshot At the Beginning (SATB) algorithm

which means that any object that was live at the beginning
of marking or that has been allocated since the beginning
of marking is considered live. Maintaining an SATB view of
the heap requires a write barrier so that if the mutator over-
writes a reference to an object that object still gets traced
during marking. We accomplish this by having a write bar-
rier put overwritten values onto a queue to be scanned by
the marking threads.

Each concurrent marking thread keeps a thread local total
of the live data for each heap region. We combine all of these
at the end of the final mark phase. We later use this data for
choosing which regions we want in our collection set. Our
concurrent marking threads use a work stealing algorithm
to take advantage of as many idle threads as are available
on the machine.

3.3.2 Choosing the collection set
We choose a collection set based on the regions with the

least live data. Our goal is to keep up with mutation so we
need to collect at least as much space as was allocated during
the previous GC cyle. We have several available heuristics
for choosing regions based on heap occupancy or region den-
sity. Pause times are proportional to the size of the root set,
not the number of regions in the collection set, therefore we
are free to choose a collection set based purely on collector
efficiency.

3.3.3 Concurrent Compaction
Once the collection set has been chosen we start a concur-

rent compaction phase. The concurrent GC threads know
how many bytes of data are live in the collection set, so
they know how many regions to reserve. The GC threads
all cooperate evacuating live objects from targeted regions.
A mutator may read an object in a targeted region however
a write requires the mutator also attempt to make a copy
so that we have one consistent view of the object. It is an
invariant of our algorithm that writes never occur in from
regions.

The concurrent GC threads do most of the evacuation
work using a speculative copy protocol.

• They first speculatively copy the object into their thread
local allocation buffer.

• They then try to CAS the Brooks’ indirection pointer
to point to their speculative copy.

• If the CAS succeeds then they have the new address
for the object.

• If the CAS fails then another thread beat them in the
race to copy the object. The concurrent GC thread
unrolls their speculative copy and proceeds using the
value of the to-region pointer the other thread left in
the indirection pointer.

When a Java thread wants to write to a from-space ob-
ject it also uses the speculative allocation protocol to copy
the object to it’s own thread local allocation buffer. Only
once it has a new address for the object may it perform the
intended write. A write into a to-region object is guaran-
teed to be safe because to-region objects won’t get moved

during concurrent evacuation. We measured the amount of
time the Java threads spent copying objects in write barri-
ers when running the SpecJBB2015 benchmark and the time
was negligible, less than 118 microseconds total over the two
hour run.

Java threads may continue to read from-region data while
other threads are copying objects to to-regions. Once the
object is copied, the indirection pointer will point to the
new copy and accesses will be directed there. By contrast
GCs which require all accesses to be in to-regions may suffer
from read storms. During evacuation forward progress may
be significantly delayed by the mutator performing GC work
to maintain the“all accesses must be in to-regions invariant”.
Our solution restricts this penalty to the normally far less
frequent update case.

Note that reads of immutable data such as class pointers,
array size, or final fields do not require read barriers because
the value is the same in all copies of the object.

3.3.4 Updating References
Updating all of the references to from-region objects to

point to their to-region copies requires a traversal of the
entire heap. Rather than running this in a separate phase,
and requiring stopping an additional time per gc cyle, we
perform the updates during the next concurrent marking.

3.4 Barriers
Shenandoah relies on a read barrier to read through the

Brooks’ indirection pointer as well as a double write bar-
rier. We have the SATB write barrier on stores of object
references into heap objects. These object reference stores
queue the overwritten values to maintain SATB correctness.
We also have a concurrent evacuation write barrier which
aids the concurrent GC by copying about to be written ob-
jects out of targeted regions to maintain our ”no writes in
targeted regions” invariant.

OpenJDK is a three tiered compilation environment. Meth-
ods that are only executed a few times are interpreted. Once
a method hits a certain threshold of executions it is compiled
using a text book style compiler called C1. Only when the
method has hit an even higher threshold of executions will it
be compiled using C2, the optimizing compiler. We imple-
mented our read and write barriers for each tier of compi-
lation, however the solutions are very similar. Here we will
only discuss the optimizing compiler.

Barriers are required in more places than just when read-
ing or writing the fields of objects. Object locking writes to
the mark word of an object and therefore requires a write
barrier. Anytime the VM accesses an object in the heap
that requires a barrier.

3.4.1 Read Barriers
As shown in figure 4 our compiled read barriers are a

single assembly language instruction.

void

ShenandoahBarrierSet::compile_resolve_oop(){

__ movptr(dst, Address(dst, -8));

}

Figure 4: Shenandoah simple read barrier for fields
of non-null objects



Here’s an assembly code snippet for

reading a field:

When we start register %rsi contains the address of the

object, and the field is at offset 0x10.

mov 0x10(%rsi),%rsi

; *getfield value

Here’s what the snippet looks like

with Shenandoah:

mov -0x8(%rsi),%rsi

; read of forwarding pointer at address object - 0x8

mov 0x10(%rsi),%rsi

; *getfield value

Figure 5: Shenandoah read barrier snippets

3.4.2 Write Barriers
Write barriers need to do more work than read barriers

but that is mitigated by their lower frequency. When con-
current marking is running we have an SATB write barrier
which ensures that any values overwritten during concur-
rent marking are scanned by the concurrent marking thread.
This barrier is exactly the same as the one used by G1 and
CMS. Plus we have an additional Shenandoah specific write
barrier which is only performed when we are in a concurrent
evacuation phase which ensures that objects in targeted re-
gions are forwarded before the write is attempted.

We employ an assembly level check to detect when we are
in a concurrent evacuation phase, and if we are we call out
to a runtime routine to copy the object when required.

The copying write barrier is required on all object writes
including writes of base types and locking of objects. We
are the only OpenJDK collector that requires write barriers
on fields other than reference fields.

The order of the evacuation in progress check and the read
of the indirection pointer is important. The evacuation in
progress flag is set during the final marking STW phase, but
cleared concurrently when all the copying work is complete.
The flag may flip from true to false while we are in the write
barrier. If we read the indirection pointer first, found the
from-region object referencing it-self, and then read the false
evacuation in progress field we might find ourselves writing
to a from-region object. If we read the evacuation in progress
flag first, than we are being conservative and are guaranteed
to always call the write barrier when necessary.

3.5 if_acmpxx
Figure 7 shows you the issue with if acmpeq and if acmpne

bytecodes. They compare two references. We initially be-
lieved that resolving both references would be sufficient, but
unfortunately the GC may move one object out from under
the mutator and cause false negatives. The naive solution
would be to perform write barriers on both arguments, but
we made that more efficient. We first perform a direct com-
parison of a and b and only if that fails do we then perform
the comparison again with read barriers on both arguments

Here’s an assembly code snippet for

writing a field with Shenandoah:

0x00007fa8351e3f66: cmpb $0x0,0x640(%r15)

; %r15 is the local thread

; 0x640 is the offset of the

; evacuation_in_progress flag

; so we compare the evacuation_in_progress

; flag to zero

0x00007fa8351e3f6e: mov -0x8(%r8),%r13

; Read the indirection pointer.

0x00007fa8351e3f72: je 0x00007fa8351e3f7f

; if !evacuation_in_progress jump to store

0x00007fa8351e3f74: xchg %rax,%r13

; swap our object %r13 with %rax

; %rax is the expected input arg

0x00007fa8351e3f77: callq Stub::shenandoah_wb

0x00007fa8351e3f7c: xchg %rax,%r13

; swap the return value %rax

; which is possibly new address of

; our object back into %r13

0x00007fa8351e3f7f: mov %sil,0x18(%r13,%rdx,1)

;*bastore {reexecute=0 rethrow=0 return_oop=0}

; - jdk.internal.org.objectweb.asm.ByteVector::

; putUTF8@61 (line 255)

Figure 6: Shenandoah specific write barrier snippet

Figure 7: if acmpxx problem
a’ = resolve(a);

gc thread moves a

b’ = resolve(b)

a and b are equal, but a’ and b’ aren’t.

. Read barriers are sufficient because the only way the a ==
b comparison will fail incorrectly is if one of the arguments
has been copied.

Implementing Java level CAS of static and instance fields
(under Unsafe or the java.util.concurrency classes) are han-
dled similarly.

4. BARRIER OPTIMIZATIONS IN THE OP-
TIMIZING COMPILER

4.1 Safepoints
The Hotspot optimizing compiler issues safepoints at places

where garbage collection events might occur. Places like
method calls, and allocations. A final marking will occur
at a safepoint and will copy all of the values referenced di-
rectly from the mutator threads and update the references in
the threads before starting the concurrent evacuation phase.
This means that we do not need to re-issue barriers after a
safepoint.

4.2 Interference from other threads
The Java memory model allows us to eliminate redundant

barriers. It’s OK for us to miss a write from another thread



Figure 8: if acmpxx
if ((a != b) &&

(resolve(a) != resolve(b)))

return false

else

return true

end

as long as there are no volatile accesses or memory barriers.

4.3 Barrier elimination
The read and write barriers are inserted at parse time.

We created two new nodes in the intermediate representa-
tion for ShenandoahReadBarrier and ShenandoahWriteBar-
rier which are generated at the appropriate points during
parsing. Global Value Numbering(GVN) is a phase in the
optimizing compiler which assigns a value number to vari-
ables and expressions. If values have the same number then
they are provably the same value. We’ve added code to the
GVN phase to detect redundant barriers.

Rules for when read or write barriers are not needed:.

• If the value is newly allocated it will be in a to-region.

• If the value is a NULL pointer (NullPointerException).

• If the value is a constant.

• If the value comes from a write barrier.

Additionally read barriers may be eliminated:.

• If the value is guaranteed to be the same in both from
and to-region copies (final fields).

• If the input value comes from a read barrier and there
is provably no interfering write barrier.

Barriers may be hoisted outside of loops, and the optimiz-
ing compiler does that just as it would any other constant
value.

4.4 Volatiles
Volatiles are treated like a full memory fence. They create

a new memory state and any subsequent memory accesses
are treated as new values.

5. DESIGN DECISIONS

5.1 Shenandoah isn’t generational
Generational garbage collection algorithms focus their pro-

cessing cycles on the youngest objects, based on the gener-
ational hypothesis that most objects die young. Some mod-
ern applications, such as web caches, hold onto objects just
long enough to thwart generational garbage collectors. We
wrote a small Least Recently Used (LRU) cache benchmark
as an example of this behavior. The LRU benchmark mod-
els a URL caching program which maps web URLs to their
corresponding content. We allocated 10,000 1.25mb binary

trees and keep the most recently allocated 1000 in an array.
We ran this program with both Shenandoah and G1 with
a 4gb heap. Shenandoah was able to run this program in
16 seconds with 85 gc pauses taking a total of 4.24 seconds.
G1 required 177 seconds, which is an order of magnitude
worse than Shenandoah. This was entirely due to G1 hav-
ing to execute 17 full gcs to keep up with the allocations,
these full GCs took 105 seconds. These numbers look worse
than they should because full garbage collections in G1 use
a single threaded algorithm to compact the entire 4gb heap.
The point is that Shenandoah was able to maintain a steady
state, while the generational garbage collector continued to
run out of space and be forced into performing full collec-
tions.

Generational garbage collection algorithms usually em-
ploy a card table to summarize references from old genera-
tion objects to young generation objects. This enables them
to perform young generation collections and only scan/update
the areas in the old generation which reference young gen-
eration objects. An implementation may accomplish this by
summarizing the old generation with 1 bit in the card table
for typically every 512 bytes of old generation data. This
gives a compact representation of areas of the old genera-
tion which must be scanned and enables collecting only the
young generation without scanning the entire old genera-
tion. The issue is that distinct areas of the old generation
may actually require updates to the same cache line in the
card table. This may degrade the performance of your care-
fully designed embarassingly parallel application.

Shenandoah will collect the regions with the most garbage,
whether they are young or old. We do not employ a card
table, so there are no surprise concurrency bottlenecks. The
cost of the one word indirection pointer is slightly offset by
no longer having an off heap data structure for managing
old to young references.

6. HUMONGOUS OBJECTS
Programs sometimes allocate objects which are larger than

a single heap region. If there isn’t enough continuous space
to allocate a humongous object then we will force a non-
concurrent GC phase to try to make enough contiguous
space. Humongous objects are never compacted. If a con-
current marking shows that a humongous object is no longer
live than the heap regions it occupies may be immediately
reclaimed. This means that we don’t need to ever copy more
than one object during a write barrier, and that object must
be less than the region size. Humongous objects contribute
to fragmentation. An object which occupies an entire region
+ 1 word, will take up two compete regions. It’s possible to
allocate objects in the remainder of that second region, but
until the humongous object dies the second region will re-
main in use. It’s also possible that humongous objects may
fragment the heap enough that there are several small free
spaces, but not enough contiugous free space to allocate a
large object. It’s possible to compact humongous objects by
performing a full garbage collection, but we don’t do that
by default.

7. RESULTS
There was a performance degradation in many cases, how-

ever in all cases the amount of time in spent in GC pauses,
and the length of the average and maximum GC pause de-



Table 1: SpecJBB

Algorithm max-JOPS critical-JOPS

Shenandoah 71652 43472
G1 80467 6199
Parallel 89190 19863
ParNew/CMS 43511 7355

Table 2: DaCapo 9.12 Benchmarks with no GC ac-
tivity

Benchmark Shenandoah G1 percentage overhead

avrora 2096ms 2052ms 2.1 %
fop 1103ms 1044ms 5.6 %
luindex 861ms 832ms 3.4 %

creased significantly. Please keep in mind that these tests
were run with the same size heaps regardless of the gc algo-
rithm, which gives Shenandoah a handicap due to the addi-
tional space required for the indirection pointers. Shenan-
doah does not yet support compressed oops, so all runs were
made with compressed oops turned off.

All tests were run on an Intel Brickland box running RHEL
7.

Intel Platform: Brickland-EX Cpu:Broadwell-EX, QDF:QKT3
B0 Stepping (QS), 2.2Ghz, 24 Core, 60MB shared cache
COD ENABLED Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20GHz
524288 MB memory, 1598 GB disk space

7.1 SPECJBB2015
We ran SPECJBB2015 Composite with a 200gb heap us-

ing Shenandoah, G1, Parallel GC, and ParNew/CMS. SpecJBB
measures Java server performance. It models a world-wide
supermarket company and measures both critical through-
put (Critical-JOps) under response time requirements as
well as pure throughput (Max-JOps). Shenandoah’s max-
JOPS were within 20 percent of the parallel collector and
performed better than ParNew/CMS. Shenandoah really shines
in critical-JOPS where we received a score of more than
twice the parallel collector. Please see table 1.

7.2 DaCapo
The DaCapo benchmarks [4] weren’t really meant to mea-

sure server performance, especially with large heaps, but
we’ve included them here for perspective. Figure 9 shows
end to end run time of Shenandoah and the other Open-
JDK garbage collectors.

Just for fun we ran a few of the DaCapo benchmarks with
an obnoxiously large heap so that there was no GC activity.
This measures just the added cost of our read/write barriers.
As you can see in table 2 the barriers added only between 2.1
and 5.6 percent overhead. The other benchmarks were left
out because their resource consumption triggered young gen-
eration GCs despite there being significant remaining heap.

7.3 ElasticSearch
We wanted to measure our performance with a benchmark

that simulated a real customer application, so we down-
loaded approximately 200gb of wikipedia data from com-
moncrawl.org and indexed it using elasticsearch. We ran
this benchmark with all of the OpenJDK GC algorithms

with a 100gb heap. Shenandoah experienced a significant
slowdown however our pause times were again much better.
As you can see in Table 3 we had significantly fewer GC
pauses than the other algorithms, and our pause times were
measured in ms as opposed to seconds. We are investigating
why our end to end run time was 24 percent more than the
next closest algorithm.

8. LESSONS LEARNED

8.1 Debugging
One of the difficult lessons was that it’s easy to miss a

barrier. We found it helpful to mprotect pages of targeted
regions and unprotect them only for the short intervals re-
quired to write a fowarding pointer. Mprotect is a linux
system call which allows you to declare a page read only,
and will signal a SIGSEGV if someone tries to write to the
page. This technique was extremely helpful. Another tech-
nique for addressing this problem was adding a verification
pass to the optimizing compiler. We walk the intermediate
representation of the program graph to ensure that all nodes
which perform reads or writes on the heap have a preceding
barrier.

8.2 JNI Critical Sections
JNI Critical Sections are short sections of native (non

Java) user code which must run uninterrupted by the JVM.
Shenandoah can’t enter a final mark pause until all JNI crit-
ical sections complete. Initial mark pauses don’t move ob-
jects and therefore may run while the JNI critical section is
running. When Shenandoah starts the final mark pause we
check if there are any active JNI critical regions, if there are
we toggle a switch and return immediately. That switch tells
Java to block before entering any more JNI critical regions,
and after the last Java thread leaves a JNI critical region
trigger the final mark pause again. Other GCs need to wait
for all objects to be evacuated before any JNI threads can
enter critical regions, however we only need to wait until the
final marking pause completes.

8.3 Weak References and Class Unloading
Weak references and class unloading are the cause of bulk

of our final marking pause times. We can discover weak
references concurrently, but we must process them during a
stop the world pause in the order of strength. All strong
references must be completed first, followed by soft, weak,
phantom, and jni in that order. Theoretically class unload-
ing could be done concurrently, but it’s not straightforward
and we haven’t tackled it yet.

8.4 Locked Objects
Locking/Unlocking objects are writes and go through the

write barrier protocol, however during out final-mark pause
we eagerly evacuate all active monitors and this allows us to
avoid a write-barrier on monitor-exit.

8.5 Time vs Space
Waiting to update references to evacuated objects until

the next concurrent marking is efficient in terms of time
spent, however it’s very inefficient in terms of memory us-
age. The space overhead of Shenanodah is not just the for-
warding pointer, but also those zombie regions which must
be kept around for their forwarding pointers, and can’t be
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Table 3: ElasticSearch
Collector Run Time Total Pause Max Pause Avg Pause Number of Pauses
Shenandoah 387.602s 320ms 89.79ms 53.01ms 6 (3 initial mark, 3 final mark)
G1 312.052s 11.7s 1.24s 450.12ms 26 (26 young, 0 old)
CMS 285.264s 12.78s 4.39s 852.26ms 15 (15 young, 0 old)
Parallel 260.092s 6.59s 3.04s 823.75ms 8 (6 young, 2 old)

freed until the next complete concurrent mark. There are
strategies employed by other collectors [12] for dealing with
this problem, but they rely on having a memory protection
read barrier.

8.6 Stopping all of the threads
Shenandoah currently stops all of the Java threads to

scan the thread stacks. We found that over the course of a
SPECJBB run we spent 26.87 seconds in initial mark pauses,
but only 10.53 seconds in our initial mark GC Code. We’d
like to explore better methods of synchronization, as well
as adopting some of the techniques from [9] for performing
more of the work concurrently.

9. RELATED WORK
There are many different Garbage Collection (GC) algo-

rithms available in OpenJDK. The Parallel garbage collector
[8] stops the world to compact the heap but uses multiple
work stealing threads [1] to get the work done quickly. Con-
current Mark and Sweep [11] runs while the Java program
is running but doesn’t perform compaction. G1 [7] is par-
allel and concurrent but still requires stopping the world to
perform compaction. Shenandoah is parallel and concurrent
and performs compaction while the Java program is running.
Azul’s pauseless [6] and C4 [12] collectors are parallel and
concurrent and perform compaction while the Java program
is running, however their algorithms aren’t freely available
in OpenJDK.

Our work is built on the early work of Brooks’ incremen-
tal collector [5]. Metronome [2] [3] also uses a Brooks’ style
forwarding pointer however their work focuses on maintain-
ing mutator usage guarantees. Shenandoah focuses instead
on minimizing pause times.

There are many concurrent garbage collection algorithms
in the literature. The most similar are the Chicken algorithm
[10] and The Block-Free Concurrent G1 varient of Osterlund
et al [9]. The Chicken algorithm requires a two instruction
read barrier, one instruction to mask the tag bit, and one
instruction to load the indirection pointer. Our algorithm
only requires a single read. The Osterlund work uses a field
pinning protocol to prevent the mutator and gc threads from
accessing the same object at the same time. Both of these
algorithms have a fallback position of not copying an object
if a write conflict between the mutator and the gc exists.
The Osterlund work [9] has given us much inspiration for
further development of Shenandoah.

10. CONCLUSIONS AND FUTURE WORK
We have presented Shenandoah, a concurrent and parallel

garbage collector which performs both the marking of the
live objects, and the compacting of the heap concurrently
with running Java threads. Shenanodah lowers the number
of pauses as well as the duration of pause times and therefore
increases the responsiveness of a Java Virtual Machine.

We have many plans to improve Shenandoah in the fu-
ture. A NUMA version of Shenanodah would have separate
work stealing queues for each NUMA node, and ensure data
resides close to the thread that most recently accessed it.

Shenandoah currently uses a Snapshot at the Beginning
(SATB) concurrent marking algorithm which ensures that
all objects which were live at the start of concurrent marking
are still live at the end of the concurrent marking. Incremen-
tal Update is a possible alternative which ensures that the
concurrent marking algorithm traces all objects which are
live at the end of concurrent marking. Any time the object
graph is modified, the newly added values must be added
to the marking queues. SATB was choosen for CMS and
G1 because it has a simpler termination condition. CMS
and G1 have young generation collections between concur-
rent markings, so having the concurrent marking algorithm
identify young garbage isn’t as important. . The benefit
of catching short lived data earlier may be worth the more
complicated termination protocol.

The Shenandoah heuristics we used in this paper are sim-
plistic. We believe that there is more work to be done and
with the correct heuristics the GC can be guaranteed to keep
up with mutator allocation rates. Along the same lines we
would like to study the mutator utilization guarantees of
Shenandoah.

It’s worth pursuing either a better way of stopping all of
the threads or an algorithm which stops the threads one at
a time as in [9]

Card Tables allow interim young generation collections
without completing a full concurrent marking. Instead of
breaking the heap into young and old regions and only al-
lowing interim collections of the young regions, it should be
possible to break the heap into connected subgraphs and
perform an interim collection of an entire subgraph between
concurrent markings.
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